e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

On the Forcing edge Steiner Global Domination Number of a Graph

¹J. Suja and ²V. Sujin Flower

¹ Register Number 20223042092017, Research Scholar, Department of Mathematics, Holy Cross College, Nagercoil - 629 001, India. e-mail: jesinsuja@gmail.com ²Assistant Professor, Department of Mathematics, Holy Cross College, Nagercoil - 629 001, India. email: sujinflower@gmail.com Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

ARTICLE INFO

ABSTRACT

Received:15 Dec 2024 Revised: 19 Feb 2025

Accepted:28 Feb 2025

Let W be the minimum edge Steiner global dominance set of a connected graph G. If W is the only minimum edge Steiner global dominating set that contains T, then a subset T W is referred to as a forcing subset for W. A minimum forcing subset of W is a forcing subset for W with minimum cardinality. The cardinality of a minimal forcing subset of W is its forcing edge Steiner global dominance number, represented by f_($\bar{\gamma}$ se) (W). f_($\bar{\gamma}$ se) (G) = $\min\{f_{\gamma}(y \text{ se})\}$, is the forcing edge Steiner global domination number of G, represented by f (y se) (G), where the minimum is obtained across all minimal edge Steiner global dominating sets W in G. The forcing Steiner and edge Steiner global dominance number of a graph is given some realisation findings in this article.

Keywords: Forcing edge Steiner global domination number, edge Steiner number, edge Steiner domination number.

AMS subject classification: 05C12.

INTRODUCTION

This paper discusses a simple, connected undirected graph, G = (V, E). Let n and m stand for size and order, respectively. For a fundamental reference to graph theory, see [2]. Two vertices, uand v, are considered nearby if uv is an edge of G. Vertex $v \in V$ has a degree of deg(v) = |N(v)|, and u is v's neighbour if $uv \in E(G)$. The collection of v's neighbours is represented by N(v). A vertex v is called a universal vertex if deg(v) = n - 1. With V(G[S]) = S and $E(G[S]) = \{uv \in S\}$ E(G): $u, v \in S$, the subgraph created by a set S of vertices of a graph G is represented as G[S]. If G[N(v)] is complete, then a vertex v is an extreme vertex. If there is a universal vertex in N(v) in the subgraph created by its neighbours, then a vertex v is a semi-extreme vertex of G.

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

One of the fundamental ideas of graph theory is distance [3]. The length of the shortest u-v path in a connected graph G is the distance d(u,v) between two vertices u and v. A u-v geodesic is a u-v route of length d(u,v). The Steiner distance d(W) of a nonempty set W of vertices in a connected graph G is the smallest size of a connected subgraph of G that contains W. In [2], the Steiner distance was examined. Every subgraph is a tree, and they are referred to as Steiner trees with regard to W or Steiner W-trees. The set of all vertices on Steiner W-trees is represented by S(W). S(W) = W if is linked. A Steiner W-tree is a shortest u-v path or a u-v geodesic if W has precisely two vertices, u and v. If every vertex in a set $W \subseteq V(G)$ or if S(W) = V(G), then the set is referred to as a Steiner set of G. The Steiner number S(G) of G is the cardinality of a Steiner set of minimal cardinality, often known as a minimum Steiner set or just an S-set. A graph's Steiner number was first shown in [2] and then examined in [5]. If a set of vertices W in G is both a dominating set of G and an edge Steiner set, then W is referred to as an edge Steiner dominating set of G. The edge Steiner domination number, represented as g-set of g-size g-set of g-size g-set of g-size of g-size g-set of g-size of g-size g-set of g-size o

If each vertex of $V \setminus D$ has at least one neighbour in D, then D is a dominant set in G. The domination number of G, represented as $\gamma(G)$, is the lowest cardinality of a dominating set of G. A γ -set of G is a dominant set of cardinality $\gamma(G)$. If D is a dominating set of both G and G, then a subset $D \subseteq V$ is referred to be a global dominating set in G. The smallest cardinality of a minimal global dominating set in G is the global domination number $\overline{\gamma}(G)$. In [4], these ideas were examined.

If a set S is both a Steiner set and a global dominating set of G, then $S \subseteq V$ is a Steiner global dominating set of G. The Steiner global domination number of G, represented by $\overline{\gamma}_s(G)$, is the lowest cardinality of a Steiner global dominating set of G. A $\overline{\gamma}_s$ -set of G is a Steiner global dominating set of cardinality $\overline{\gamma}_s(G)$. If a vertex v is present in every $\overline{\gamma}_s$ -set of G, then it is considered a Steiner global dominance vertex of G. If an edge Steiner set G is both an edge Steiner set and a global dominating set of a linked graph G, then G is an edge Steiner global dominating set of G. An edge Steiner global dominating set's minimal cardinality is the edge $\overline{\gamma}_{Se}(G)$ is the Steiner global dominance number of G.

The Steiner global dominant vertices of G are all of its extreme and universal vertices. There exist, in fact, Steiner global dominant vertices that are neither universal nor extreme vertices of G. If a vertex v is present in every $\overline{\gamma}_{se}$ -set of G, it is considered an edge Steiner global dominating vertex of G. All of G's universal and semi-extreme vertices are edge Steiner global dominating vertices. In actuality, certain edge Steiner global dominant vertices are neither universal nor semi-extreme vertices of G. In G, these ideas were examined.

Numerous authors have examined the notion of force in [1][3]. Let S be a Steiner global dominating set of G that is at least minimal. If S is the only minimal Steiner global dominating set that contains T, then a subset $T \subseteq S$ is referred to be a forcing subset for S. A minimum forcing subset of S is a forcing subset for S with minimum cardinality. The cardinality of a minimal forcing subset of S is its forcing Steiner global dominance number, represented by $f_{\overline{\gamma}_S}(S)$. $f_{\overline{\gamma}_S}(G) = \min\{f_{\overline{\gamma}_S}(S)\}$, is the forced Steiner global domination number of G, represented by $f_{\overline{\gamma}_S}(G)$, where the minimum is calculated across all minimal Steiner global dominating sets S in G. These ideas have been examined in [1][5].

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

The sequel use the following theorem.

Theorem 1.1. [5] Let G be a connected graph. Then

- (i) Each extreme vertex and each universal vertex of G belongs to every Steiner global dominating set of G.
- (ii) $f_{\overline{Y}_c}(G) \leq \overline{Y}_s(G) |Z|$, where Z is the set of all Steiner global dominating vertices of G.
 - 2. THE FORCING EDGE STEINER GLOBAL DOMINATION NUMBER OF A GRAPH

Definition 2.1. Let W be the least edge Steiner global dominance set of a connected graph G. If

W is the only minimum edge Steiner global dominating set that contains T, then a subset $T \subseteq W$ is referred to as a forcing subset for W. A minimum forcing subset of W is a forcing subset for W with minimum cardinality. The cardinality of a minimal forcing subset of W is the forcing edge Steiner global domination number, represented as $f_{\overline{\gamma}se}(W)$. $f_{\overline{\gamma}se}(G) = \min\{f_{\overline{\gamma}se}(W)\}$ is the forcing edge Steiner global domination number of G, represented by $f_{\overline{\gamma}se}(G)$, where the minimum is obtained across all minimal edge Steiner global dominating sets W in G.

Example 2.2. As shown in Figure 2.1, the graph G is represented as $W_1 = \{v_1, v_2, v_5\}$ and $W_2 = \{v_1, v_4, v_7\}$ are the only two $\overline{\gamma}_{se}$ -sets of G such that $f_{\overline{\gamma}se}(W_1) = f_{\overline{\gamma}se}(W_2) = 1$ so that $f_{\overline{\gamma}se}(G) = 1$.

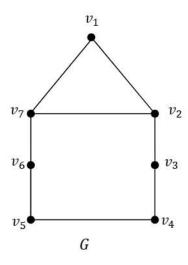


Figure 2.1

Theorem 2.3. For every connected graph G, $0 \le f_{\overline{\gamma}se}(G) \le \overline{\gamma}_{se}(G) \le n$.

Theorem 2.4. Assume that G is a connected graph. Consequently,

 f_{yse}(G) = 0 if and only if G possesses a distinct Steiner global dominating set with a minimal edge.

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- (ii) $f_{\overline{\gamma}se}(G) = 1$ if and only if G contains a minimal edge Steiner global dominating set with at least two elements, one of which is a special minimum edge Steiner global dominating set that contains one of its components.
- (iii) If and only if no minimal edge Steiner global dominating set of G is the sole minimum edge Steiner global dominating set that contains any of its appropriate subsets, then $f_{\overline{\gamma}se}(G) = \overline{\gamma}_{se}(G)$.

Observation 2.5. Let G be a connected graph, and W the set of all edge Steiner global dominating set. Then $f_{\overline{\gamma}se}(G) \leq \overline{\gamma}_{se}(G) - |W|$

The forcing edge Steiner global dominance number of standard graphs is determined below.

Observation 2.6. (i) For the path $G = P_n$ $(n \ge 2)$, $f_{\overline{\nu}se}(G) = 0$.

- (ii) For the complete graph $G = K_n (n \ge 2), f_{\overline{\gamma}se}(G) = 0.$
- (iii) For the star graph $G = K_{1,n-1}$ $(n \ge 2), f_{\overline{\gamma}se}(G) = 0.$

Theorem 2.7. For every positive integer $a \ge 0$, there exists a connected graph G such that $f_{\overline{\gamma}S}(G) = f_{\overline{\gamma}Se}(G) = a$.

Proof. Let P: x, y, z be a three-vertice route. Consider a replica of the path on two vertices, $P_i: u_i, v_i \ (1 \le i \le a)$. Let H be the graph that is produced by adding the edges yu_i and $zv_i \ (1 \le i \le a)$ to P and $P_i \ (1 \le i \le a)$. Let G be the graph that was created from H by adding the edges $zz_i \ (1 \le i \le b-a-1)$ and the additional vertices $z_1, z_2, ..., z_{b-a-1}$. Figure 2.2 shows the graph G.

We establish by demonstrating that $\overline{\gamma}_s(G) = b$. Consider the set of end vertices of G to be $Z = \{x, z_1, z_2, ..., z_{b-a-1}\}$. Since Z is a subset of each Steiner global dominating set of G according to Theorem 1.1 (i), $\overline{\gamma}_{se}(G) \geq b-a-1+1=b-a$. Z is not a Steiner global dominating set of G as $S(W) \neq V(G)$. Let $H_i = \{u_i, v_i\}$ $(1 \leq i \leq a)$. Every Steiner global dominating set has at least one vertex from each H_i $(1 \leq i \leq a)$, as can be readily shown, and so $\overline{\gamma}_s(G) \geq b-a+a=b$. Now $W = Z \cup \{u_1, u_2, ..., u_a\}$ is a Steiner global dominating set of G and so $\overline{\gamma}_s(G) = b$.

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

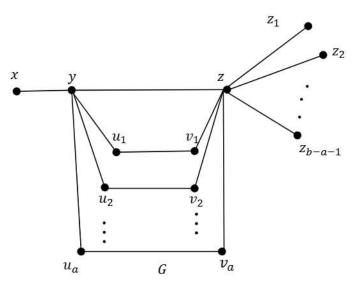


Figure 2.2

Following that, we demonstrate that $f_{\overline{\gamma}s}(G) = a$. $f_{\overline{\gamma}s}(G) = \overline{\gamma}_s(G) - |Z| = b - (b - a) = a$.according to Theorem 1.1 (ii). Now since $\overline{\gamma}_s(G) = b$ and every $\overline{\gamma}_s$ -set of Now since $\overline{\gamma}_s(G) = b$ and every $\overline{\gamma}_s$ -set of G contains G, it is easily seen that G is of the form G is of the form G is a vertex G is a vertex G is a vertex of G is a G is a vertex of G is a G

Theorem 2.8. For every integer $a \ge 0$, there exists a connected graph G, such that $f_{\overline{\gamma}s}(G) = a$ and $f_{\overline{\gamma}se}(G) = 0$.

Proof. Let $P_i: x_i, y_i \ (1 \le i \le a)$ be a replica of the route on two vertices, and let $P: x_i, y_i, z$ be a path of three vertices. Let Q be the graph that is created by adding the edges yx_i, xx_i and $zy_i \ (1 \le i \le a)$ to P and $P_i \ (1 \le i \le a)$. Figure 2.3 shows the graph G.

We start by demonstrating that $f_{\overline{\gamma}s}(G) = a$. Let $H_i = \{x_i, y_i\}$ $(1 \le i \le a)$ and $Z = \{x, z\}$. Since every Steiner global dominating set of G has at least one vertex from each H_i $(1 \le i \le a)$, Z is a subset of all Steiner global dominating sets of G according to Theorem 1.1 (i), meaning that $\overline{\gamma}_s(G) \ge a + 2$. Suppose that $W = Z \cup \{x_1, x_2, ..., x_a\}$. Consequently, S(W) = V(G). The Steiner global dominant set of G is thus S. Since W is a dominating set in G and \overline{G} . W is a global dominating set of G. Therefore W is an edge Steiner global dominating set of G so that $\overline{\gamma}_s(G) = a + 2$.

Following that, we prove $f_{\overline{\gamma}s}(G) = a$. $f_{\overline{\gamma}s}(G) = \overline{\gamma}_s(G) - |Z| = a + 2 - 2 = a$ according to Theorem 1.1 (ii). It is now clear that the $\overline{\gamma}_s$ -set of G is of the type $W = Z \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in H_i$ $(1 \le i \le a)$, since $\overline{\gamma}_s(G) = a + 2$ and every $\overline{\gamma}_s$ -set of G includes Z. Let T be any proper subset of W with |T| < a. Then there is a vertex c_i $(1 \le i \le a)$ such that $c_j \notin T$. Let b_j be a vertex of H_j distinct

e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

from c_j . Then $W_1 = (W - \{c_j\}) \cup \{b_j\}$ is a $\overline{\gamma}_s$ -set of G properly containing T. Thus T is not a forcing subset of W. This is true for all minimum $\overline{\gamma}_s$ -set of G and so it is follows that $f_{\overline{\gamma}s}(G) = a$. Such that we demonstrate $f_{\overline{\gamma}se}(G) = 0$. According to Theorem 1.1, Z is a subset of all Steiner global dominating sets of G, and since only the vertex x_i appears in every Steiner global dominating set, so $\overline{\gamma}_{se}(G) \geq a + 2$. It follows that $f_{\overline{\gamma}se}(G) = 0$ and $\overline{\gamma}_{se}(G) = a + 2$ since $W = Z \cup \{x_1, x_2, ..., x_a\}$ is the unique $\overline{\gamma}_{se}$ -set of G.

REFERENCES

- [1] G. Chatrand, H. Galvas, K. C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math, Combin. Comput., 25 (1997), 161-174.
- [2] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Math. 242 (2002), 41-54.
- [3] C. Hernando, T. Jiang, M. Mora, I. M. Pelayo, and C. Seara, On the Steiner, geodetic and hull number of graphs, Discrete Math. 293 (2005), 139-154.
- [4] T. W. Hayes, P. J. Slater, and S. T. Hedetniemi, Fundamentals of Domination in Graphs, Boca Raton, CA: CRC Press, (1998).
- [5] P. Santhakumaran and J. John, The forcing Steiner number of a graph, Discuss. Math. Graph Theory 31(1) (2011), 171-181.
- [6] P. Santhakumaran and J. John, The edge Steiner number of a graph, Journal of Discrete Mathematical Sciences and Cryptography 10(5) (2007), 677-696.